- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Hutyra, Lucy R. (2)
-
Jones, Taylor S. (2)
-
Li, Dan (2)
-
Allen, David W. (1)
-
Bromley, Fern L. (1)
-
Garvey, Sarah M (1)
-
Harrison, Jamie L (1)
-
Hutyra, L R (1)
-
Jones, Taylor S (1)
-
Marrs, Julia K. (1)
-
Smith, Ian A. (1)
-
Templer, Pamela H (1)
-
Tieskens, Koen F. (1)
-
Wang, Liang (1)
-
Winbourne, Joy B (1)
-
Winbourne, Joy B. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Smith, Ian A.; Winbourne, Joy B.; Tieskens, Koen F.; Jones, Taylor S.; Bromley, Fern L.; Li, Dan; Hutyra, Lucy R. (, Frontiers in Ecology and Evolution)The impacts of extreme heat events are amplified in cities due to unique urban thermal properties. Urban greenspace mitigates high temperatures through evapotranspiration and shading; however, quantification of vegetative cooling potential in cities is often limited to simple remote sensing greenness indices or sparse, in situ measurements. Here, we develop a spatially explicit, high-resolution model of urban latent heat flux from vegetation. The model iterates through three core equations that consider urban climatological and physiological characteristics, producing estimates of latent heat flux at 30-m spatial resolution and hourly temporal resolution. We find strong agreement between field observations and model estimates of latent heat flux across a range of ecosystem types, including cities. This model introduces a valuable tool to quantify the spatial heterogeneity of vegetation cooling benefits across the complex landscape of cities at an adequate resolution to inform policies addressing the effects of extreme heat events.more » « less
-
Winbourne, Joy B; Jones, Taylor S; Garvey, Sarah M; Harrison, Jamie L; Wang, Liang; Li, Dan; Templer, Pamela H; Hutyra, L R (, BioScience)null (Ed.)Abstract The expansion of an urban tree canopy is a commonly proposed nature-based solution to combat excess urban heat. The influence trees have on urban climates via shading is driven by the morphological characteristics of trees, whereas tree transpiration is predominantly a physiological process dependent on environmental conditions and the built environment. The heterogeneous nature of urban landscapes, unique tree species assemblages, and land management decisions make it difficult to predict the magnitude and direction of cooling by transpiration. In the present article, we synthesize the emerging literature on the mechanistic controls on urban tree transpiration. We present a case study that illustrates the relationship between transpiration (using sap flow data) and urban temperatures. We examine the potential feedbacks among urban canopy, the built environment, and climate with a focus on extreme heat events. Finally, we present modeled data demonstrating the influence of transpiration on temperatures with shifts in canopy extent and irrigation during a heat wave.more » « less
An official website of the United States government
